Radical Ions Derived from Hydrides and Methyls of Aluminium, Silicon and Phosphorus: a Semi-Empirical SCF-MO Study

CHRISTOPHER GLIDEWELL

Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K. Received May 5, 1984

Abstract

Semi-empirical SCF-MO calculations were made of the energies, and geometric and electronic structures of a range of radical ions of type MR_3^{\pm} and M_2 - R_6^{\pm} where M = Al, Si or P, and R = H or CH₃. In each of the MH₃ radicals, methylation effects an increase in the HMH angle: the structure of $Al_2Me_6^-$, formed by γ -irradiation of Al_2Me_6 , is found to have C_6 symmetry and to resemble a weak complex of AlMe₂ and AlMe₄⁻. Possible identities for the radical, other than AlH₃⁻, formed on γ -irradiation of LiAlH₄ are suggested, and a considerable number of plausible identities are firmly ruled out.

Introduction

It has been deduced [1] from electron spin resonance data [2-5], that the isoelectronic hydride radicals AlH₃⁻, SiH₃⁺, and PH₃⁺ have very similar 3s character in the SOMO, and hence very similar geometric structures. On the other hand, the corresponding methyl radicals AlMe₃, SiMe₃, and PMe₃ appear to exhibit a variation in structure [1, 6, 7], indicative of considerable flattening upon methylation from PH₃⁺ to PMe₃⁺, but rather little geometric change from SiH₃ to SiMe₃: the original [5] assignment for AlMe₃ has recently been questioned [3], and it is now suggested [3] that the species originally described as AlMe₃⁻ was in fact a bridged dimer Al₂-Me₆⁻ having the SOMO in some way concentrated on just one of the aluminium centres, since hyperfine coupling to just one ²⁷Al nucleus was observed [3, 5]. On the basis of the earlier assignment [5] for AlMe₃, it was deduced that methylation at aluminium caused an increase in pyramidality, from AlH_3^{-} to $AlMe_3^{-}$, that is the opposite of the change found in the phosphorus cation radicals.

Here we report semi-empirical calculations relevant to the questions of the structural variations between MH₃ and MMe₃ radicals (M = Al, Si, P); the geometric and electronic structure of AlMe₃⁻ and Al₂Me₆⁻; the impurity-derived radical, denoted X [3], formed from γ -irradiation of Bu₄N⁺AlH₄⁻;

0020-1693/85/\$3.30

and possible structures of the dinuclear hydride and methyl radicals $Al_2R_6^-$, $Si_2R_6^\pm$, and $P_2R_6^+$ (R = H, Me).

Calculations

All calculations were carried out using the MNDO method [8-10] implemented on a VAX 11/780 computer, with the published parameterization, and UHF wavefunctions for all open-shell species: we have demonstrated previously [11-13] that this semi-empirical SCF method yields entirely satisfactory results for free radicals containing heteroatoms.

In general, all internal geometric variables were optimised independently and simultaneously, without constraints: additionally, the effect of applying specific symmetry constraints was also investigated in a number of cases.

Results and Discussion

The Structures of MH₃ and MMe₃

The optimised values of the angles <(HMH) in the hydride radicals MH₃ (M = Al⁻, Si^{*}, and P^{*}) and <(CMC) in the corresponding methyl radicals MMe₃ are recorded in Table I, along with values deduced [3, 5] from e.s.r. data, where these are known. The calculated value of the angle in SiH₃ may be compared with the results of *ab initio* calculations [14]: using a basis set of double-zeta quality, the calculated value of <(HSiH) was 112.4°, while when polarisation functions were added on all atoms, the calculated value of the angle was 111.3°.

The calculated values of the angles <(HMH) and <(CMC) show that (i) the bond angle in each example MH₃ is increased upon methylation, as expected for the substitution of a ligand of lower electronegativity [15]; (ii) the change upon methylation is least for silicon and most for phosphorus, although the range spanned by AI⁻, Si[•], and P⁺ is not large; (iii) the range of bond angles spanned by the hydrides, 3.1° is smaller than that spanned by the

© Elsevier Sequoia/Printed in Switzerland

М	MH ₃			MMe ₃		
	$\Delta H_{\rm f}^{\Theta}/{\rm kJ \ mol}^{-1}$	<(HMH)/° (calc)	<(HMH)/° (e.s.1.)	$\Delta H_{\rm f}^{\bullet}/{\rm kJ \ mol}^{-1}$	<(CMC)/° (calc)	<(CMC)/° (e.s.r.)
Al	+76.6	110.5	a	-221.7	115.1	107.9 ^{b,c}
Si•	+156.6	110.0	112.8 ^b	-182.1	113.5	113.3
P ⁺	+1029.9	113.1	113.9 ^b	+664.0	118.1	115.5 ^d

TABLE I. Optimised Molecular Parameters for MH₃ and MMe₃ Radicals.

^aNot reported. ^bRef. 5. ^cAssignment doubtful (ref. 3): see text. ^dValue for PEt₃⁺ (ref.5): calculated value for PEt₃⁺ is 118.4°.

TABLE II. Calculated Spin-Densities and Observed Central-Atom Hyperfine Couplings in MH3 and MMe3.

M ^a	MH ₃			MMe ₃		
	ρ(M)	$A(M)/G^{\mathbf{b}}$	[A/p]/G	ρ(M)	A (M)/G	[<i>A</i> / <i>ρ</i>]/G
Al	0.2673	154 ^c	576	0.1757	324 ^f	1844
Si	0.2162	190 ^d	879	0.2050	191 ^g	932
P*	0.1396	517 ^e	3703	0.0774	385 ^h	4974

^aM = ²⁷Al, ²⁹Si, ³¹P. ^bG = 10⁻⁴ T. ^cRef. 2. ^dG. S. Jackel and W. Gordy, *Phys. Rev., 176, 443 (1968).* ^eRef. 5. ^fAssignment doubtful (ref. 3): see text. ^gRef. 6. ^hM. C. R. Symons and G. D. G. McConnachie, *J. Chem. Soc., Chem. Commun., 851 (1982).* See also ref. 1.

methyls, 4.6° . So far as these angles are known from e.s.r. data [3, 5], the trends in the calculated angles mirror those in the experimental values. Of the data in Table I, only the observed value for $AlMe_3^{-}$ is seriously out of line with the other angles.

A further indication that the original assignment [5] for AlMe₃ may be incorrect [3] is given by a comparison of the calculated $\rho(M)$ values with the observed isotropic A(M) values in the two series of radicals MH₃ and MMe₃. These data are recorded in Table II. Because there are, as yet, no reliable scale factors relating $\rho(M)$ to A(M) available in the MNDO parameterization for $M = {}^{27}Al$, ${}^{29}Si$ or ${}^{31}P$, Table II is based upon a comparison of the ratio A/ρ for corresponding radicals MH₃ and MMe₃. For each of M = ²⁹Si and ³¹P, the values of A/ ρ are adequately similar for MH₃ and MMe₃: however when M = 27 Al the ratio A/ ρ is quite different for AlH₃ and for AlMe₃. Since the assignment for AlH_3^- appears to be entirely secure [2, 3], this result is consistent with the geometrical data in Table I in casting further doubt [3] upon the original assignment [5] for AlMe₃. The question of the exact nature of the species described earlier as $AlMe_3^-$ will be returned to below.

The Anion Radical Al₂Me₆⁻

The radical originally assigned [5] as $AlMe_3^-$ was produced by γ -irradiation of aluminium tri-

methyl. This compound is dimeric both in the solid state and in solution in non-coordinating solvents [16-18], having a bridged structure, Me₂Al(μ_2 -Me)₂AlMe₂, of overall D_{2h} symmetry. Consequently, plausible formulations for the radical species produced by electron attachment include not only $AlMe_3$ but also Al_2Me_6 for which either an unbridged ethane-type σ radical (iso-electronic with $Me_6C_2^+$) or a bridged diborane-type structure is possible. Optimisations of the structure of Al₂Me₆⁻ were therefore made based upon starting connectivities for the heavy atoms of both ethane-type and diborane-type: at the same time, optimisations were made for a series of methyl-aluminium fragments: AlMe₃, AlMe₃, AlMe₂, AlMe₄ and AlMe₄, and data for all these species are given in Tables III and IV.

The global energy minimum for $Al_2Me_6^-$ is calculated to occur for the ethane-type radical structure which optimises to D_{3d} symmetry: formation of this σ radical from AlMe₃ and AlMe₃⁻ is calculated to be exothermic by *ca.* 37 kJ mol⁻¹. It is a genuine σ radical, analogous to $(Me_3O)_3B \cdot B(OMe)_3^-$ [19], and has the same ²⁷Al(3s) spin density at each aluminium: consequently this isomer cannot be responsible for the six-line spectrum arising from γ -irradiation of Al₂Me₆, since in that radical only one ²⁷Al nucleus (I = 5/2) is coupled to the unpaired electron.

Free optimisation of the Me₂Al(μ_2 -Me)₂AlMe₂⁻ isomer yielded a structure of precise C_s symmetry

	$\Delta H_{\mathbf{f}}^{\bullet}/\mathrm{kJ} \mathrm{mol}^{-1}$	Point group	$\rho[^{27}\text{Al}(3s)]$	Geometry
AlMe ₃	-167.9	C _{3h}	-	d(Al–C), 1.828 A
AlMe ₃	-221.7	$C_{3\nu}$	0.1757	d(Al-C), 1.849 A; <(C-Al-C), 115.1°
AlMe ₂	+25.5	$C_{2\nu}$	0.3679	d(Al-C), 1.818 A; $<(C-Al-C)$, 124.2°
AlMe ₄ ^a	-	_	-	_
AlMe ₄	-393.6	T_{d}		d(Al-C), 1.882 A
$Al_2 Me_6^-$	-426.4	D_{3d}	0.0540(2Al)	d(Al-Al), 2.993 A; d(Al-C), 1.851 A;
				<(Al-Al-C), 102.6°
$Al_2 Me_6^{-b}$	-376.9	G	0.3844(1Al)	See Table IV
			0.0000(1Al)	

^aDissociates to CH₃ and AlMe₃. ^bBridged structures with imposed D_{2h} or C_{2v} symmetry have ΔH_{f}^{\bullet} of -298.4 or -369.4 kJ mol⁻¹ respectively: $\rho[^{27}Al(3s)]$ of 0.261 (×2) or 0.422 (×1) and 0.000 (×1) respectively.

TABLE IV. Optimised Geometric Parameters for the C_s , Bridged, Isomer of Al₂Me₆-^a.

c c			
Di	istances/A	Angle	es/°
a	1.880 (×2)	a îa'	109.7
b	1.880	a^b	109.4 (×2)
с	1.881	a^c	109.4 (×2)
d	4.449	b ^c	109.5
е	4.491	b ^d	105.9
f	1.822 (×2)	c^e	104.4
g	5.281	d^e	40.2
		d^f	92.2 (×2)
		e^f	109.7 (×2)
		$f^{*}f'$	122.9
		d h	126.5
		e ^h	86.3
		f^h	118.3 (×2)

^aThe vector h represents the orientation of the aluminium contribution to the SOMO.

whose geometric and electronic structure indicated that it should be regarded as a weak complex of the radical AlMe₂ with the closed-shell anion AlMe₄⁻ (see Tables III and IV). Not only are the geometries of the two fragments in Al₂Me₆⁻ almost identical with those of the isolated components, but the ²⁷Al(3s) spin density in Al₂Me₆⁻ is confined entirely to one aluminium atom, having a magnitude very similar to that in AlMe₂. This complex, whose formation from AlMe₂ and AlMe₄⁻ is calculated to be exothermic by only 8.8 kJ mol⁻¹, has a SOMO which is concentrated largely on the aluminium of the AlMe₂ fragment. The orientation of the SOMO (Table IV) indicates that this aluminium can be regarded as a very highly distorted 5-coordinate fragment, in which the singly-occupied orbital is regarded as occupying one coordination site, in the symmetry plane. To this extent, the structure is consistent with that suggested earlier [3] by analogy with phosphoranyl radicals: we note that this isomer of $Al_2Me_6^-$ has an aluminium 3s spin density (and hence isotropic hyperfine coupling) more than double that of monomeric AlMe₃⁻.

When the symmetry of Al₂Me₆ was constrained to be $C_{2\nu}$, instead of the C_s found in the unconstrained optimisation, the energy rose only to -369.4kJ mol⁻¹, only marginally more stable than (AlMe₂ + AlMe₄). The basic structure of the complex remained similar to the C_s structure, with a, 1.882 Å; $b(\equiv c)$, 1.880 Å; $d(\equiv e)$, 4.178 Å; f, 1.825 Å; and g, 4.949 Å: the angles around the strictly 4-coordinate aluminium were very close to tetrahedral, with, in addition, d^e , 43.5° ; d^f ($\equiv e^f$), 116.8° ; and f^{f} , 122.0°. The principal difference lies in the orientation of the SOMO which in this constrained structure points at the other aluminium *i.e.* g^h is zero, rather than 106.5° as in the freely optimised structure. Associated with this rotation of the SOMO is a change in ρ [²⁷Al(3s)] from 0.384 to 0.422. On the other hand, when the symmetry was constrained to D_{2h} the energy rose by some 80 kJ mol⁻¹ to give a σ^* radical.

Although the present calculations have defined the structure of the radical anion $Al_2Me_6^-$, they show also that no distinction is likely to be possible, on the grounds of hyperfine couplings alone, between $Al_2Me_6^-$ and $AlMe_2^2$. Distinctions between $AlMe_3^-$, and $Al_2Me_6^-/AlMe_2^2$, based, upon hyperfine couplings, require at least a rough estimate of the MNDO scale factor between ρ and A for ²⁷Al. Values of A/ρ are: for AlH_3^- , 577; for $Al(OH)_3^-$ (see below), 584;

TABLE V. Possible Identity of Radical X.

Radical	ρ [²⁷ Al(3s)]	Sum of angles at Al/				
(i) Three-coordinate radicals						
AlH ₃	0.267	331.5				
[AlH ₂ (OH)]	0.296	331.6				
[AlH(OH) ₂]	0.338	329.9				
[Al(OH) ₃]	0.401	327.0				
$[H_2Al(HAlH_3)]^{}$	0.363	327.0				
(ii) Four-coordinat	e radicals					
AlH4	-0.007					
$\left[AlH_4\right]^{-2}$	0.524					
[AlH ₃ (OH)]	-0.025					
$[AlH_3(OH)]^{-2}$	0.340					
$[AlH_2(OH)_2]$	0.611					
$\left[\text{AlH}_2(\text{OH})_2\right]^{-2}$	0.344					
[A1H(OH)3]	а					
$\left[AlH(OH)_3\right]^{-2}$	0.329					
[Al(OH) ₄]	-0.004					
$\left[Al(OH)_4\right]^{-2}$	0.422					

^aDissociates to H· and Al(OH)₃.

for Me₂AlCl⁻ [20], 841; and for Al(OR)₃⁻ (R = alkyl) [2-, 625. The observed [5] A value for γ -irradiated aluminium trimethyl of 324 G then implies an ρ [Al(3s)] value in the range 0.38 to 0.56: this clearly rules out AlMe₃⁻ (ρ = 0.176), but is consistent with AlMe₂⁻ (ρ = 0.368), or Al₂Me₆⁻ (ρ = 0.384). The possibility of AlMe₄⁻ as the 324 G species is probably ruled out by its calculated dissociation to CH₃ and AlMe₃.

The Identity of the Radical X Derived from LiAlH₄

When LiAlH₄ is subjected to γ -irradiation a radical is formed characterised by A_{iso} (²⁷Al) of 234 G [3, 21], and denoted by X: this radical is not the expected AlH₃⁻ as this has A_{iso} (²⁷Al) of 154 G both in THF solution [2] and in the solid state [3]. Whereas AlH₃⁻ is unambiguously identified by the observation [2, 3] of proton hyperfine coupling, no such information is available for the radical X.

The plausible precursors for X include $AlH_4^$ itself and various hydroxylated analogues $[AlH_x^-(OH)_{4-x}]^-$, formed by hydrolysis and/or oxidation of the initial AlH_4^- ions. Consequently, the plausible identities for X are considerable in number, and the mononuclear examples include: AlH_4^+ and AlH_4^{-2} formed by electron-loss and -capture by AlH_4^- ; $[AlH_x(OH)_{3-x}]^-$ formed by hydrogen atom loss from $[AlH_x(OH)_{4-x}]^-$ species (x = 0-3); and species $[AlH_x(OH)_{4-x}]^-$. In addition, there is the possibility [3] that X is in fact an isomeric form of AlH_3^- whose structure has been perturbed, in the sense of becoming more pyramidal, by interaction with neighbouring counter-ions. In any event, any candidate for identification as X requires a calculated value of ρ [²⁷Al(3s)] some 50% greater than that, 0.267, in AlH₃⁻, in order to accommodate the observed value of A(²⁷Al).

Hydroxylation of AlH_3 to yield the radicals $[AlH_x(OH)_{3-x}]^-$ causes a steady increase in $\rho(Al)$ (Table V), associated with a decrease in the sum of the interbond angles at aluminium. In a similar way the calculated value of $\rho(Al)$ in Al(OBu^t)₃ is 0.481, associated with an angle sum of 329.9°. This is entirely consistent with the observation [2] of A(AI) = 300.7 G in $Al(OBu^{t})_{3}$: the ratio of A values observed for $Al(OBu^t)_3$ and AlH_3 is 1.95, while the ratio of $\rho(Al)$ values calculated for Al(OBu^t)₃ and AlH₃ is 1.80. Hence a possible identity for the radical X is [Al(OH)₃], although [AlH(OH)₂]⁻ and [AlH₂(OH)]⁻ are unlikely identities. The data of Table VI also rule out definitively the following four-coordinate species as possible radicals X: AlH₄, [AlH₃(OH)], [AlH₂(OH)₂], [AlH- $(OH)_3$ and $[Al(OH)_4]$. The corresponding dinegative radical anions are possible candidates, although overall less likely than $[Al(OH)_3]^-$. In the neutral fragment AlH₂, ρ [²⁷Al(3s)] is calculated to be 0.115, thereby effectively ruling out this radical as a possible X. There remains also the open chain isomer of $Al_2H_6^-$ (see below): in this the 3s spin densities calculated at the aluminium are 0.363 at the three-coordinate metal and only 0.003 at the four-coordinate metal.

To increase $\rho(AI)$ in AlH₃⁻ radical, distorted by inter-ionic interactions, to the required value needs a decrease in the angle <(HAIH) from the minimumenergy value of 110.5° to *ca.* 83°, with a corresponding increase in ΔH_f^{\bullet} of some 54 kJ mol⁻¹.

Dinuclear Ion Radicals $M_2 H_6^+$ (M = Al, Si, P)

In view of the known [1, 22, 23] propensity of radicals such as Me_3P^+ and Me_2S^+ to form dinuclear σ^* radicals Me_nM-MMe_n, allied to the formation of both Me₃M[•] and the dinuclear σ radicals (Me₃M)₂^{*} for M = Si, Ge, and Sn [6, 24-28], we have also investigated dimer formation by the radicals AlH_3^- , SiH_3^+ and PH_3^+ . For each of $Al_2H_6^-$, $Si_2H_6^+$, $Si_2H_6^-$, and $P_2H_6^{+}$ (representing two iso-electronic pairs), distinct minima were found for atom connectivities corresponding to D_{3d} , C_{2v} H₂M(μ_2 -H)₂MH₂, and C_s H₂M-H-MH₃ configurations (Table VI): in addition, the doubly-bridged isomer was also constrained to D_{2h} symmetry. Minima were found for all configurations of each ion radical, with the exceptions of the D_{2h} isomers of $Si_2H_6^-$ and $P_2H_6^+$. The lowest-energy isomer of $Al_2H_6^-$ is calculated to be the open chain form [H2Al-H-AlH3] while for the isoelectronic ion $Si_2H_6^+$, the most stable isomer is

TABLE VI. Optimised Properties for Dinuclear Ion Radicals of Type MH (M = A, Si, P).^a

	Ethane-type, D _{3d}	Bridged, C_{2v}	Bridged, D_{2h}	$H_2M-H-MH_3$, C_s
(i) $\Delta H_{f}^{\Phi}/kJ \text{ mol}^{-1}$				
$Al_2H_6^{-b}$	+96.2	+100.3	+102.2	+44.1
Si ₂ H ₆ ^{+ c}	+1047.5	+919.1	+919.9	+922.3
$Si_2H_6^{-d}$	-102.4	+59.8	f	-60.6
$P_2H_6^{+e}$	+792.6	+982.4	f	+960.0
(ii) SOMO types				
Al_2H_6	$\sigma(Al-Al)$	$\sigma^*(Al\cdots Al)$	$\sigma^*(Al\cdots Al)$	$n\sigma(Al), A'$
Si ₂ H ₆ ⁺	σ(Si–Si)	$\sigma^*(Si\cdots Si)$	$\sigma^*(Si \cdots Si)$	$n\sigma(Si), A'$
Si ₂ H ₆	$\sigma^*(Si-Si)$	$\sigma(Si \cdots Si)$	f	$n\sigma(Si), A'$
$P_2H_6^+$	σ*(P–P)	$p\pi(\mathbf{P}), \mathbf{B}_2$	f	<i>n</i> σ(P), A'
(iii) p[M(3s)]				
Al_2H_6	0.053 (×2)	0.464 (×1)	0.294 (×2)	0.363 (X1)
		0.098 (×1)		0.003 (×1)
Si ₂ H ₆ ⁺	0.003 (×2)	0.203 (×1)	0.138 (×2)	0.212 (×1)
		0.060 (×1)		0.000 (×1)
Si ₂ H ₆	0.238 (×2)	0.279 (×1)	f	0.321 (×1)
		0.014 (×1)		-0.005 (×1)
$P_2H_6^+$	0.174 (×2)	0.023 (×1)	f	0.052 (×1)
		0.000 (×1)		-0.007 (×1)

^a D_{3d} , C_{2v} and C_s minima result from unconstrained optimisations: D_{2h} symmetry was imposed. +177.8 kJ mol⁻¹. ^c $\Delta H_{\mathbf{f}}^{\Phi}$ (SiH₃⁺ + SiH₃⁺) + 1111.0 kJ mol⁻¹. ^d $\Delta H_{\mathbf{f}}^{\Phi}$ (SiH₃⁻ + SiH₃⁺), +104.5 kJ mol⁻¹. ^e $\Delta H_{\mathbf{f}}^{\Phi}$ (PH₃ + PH₃⁺), +1046.4 kJ mol⁻¹. ^fNo D_{2h} minimum located.

the doubly bridged form $H_2Si(\mu_2-H)_2SiH_2^{+}$: the $C_{2\nu}$ and D_{2h} isomers are very close in energy, although quite different in terms of bonded distances. The SOMO in these two ions are of $n\sigma$ and σ^* type respectively. In the isoelectronic pair of ions $Si_2H_6^-$ and $P_2H_6^+$, the D_{3d} isomer, a σ^* radical, is the most stable isomer in each case.

None of these di-nuclear ions appears so far to have been identified: we note however that $B_2H_6^-$, formally isoelectronic with $Al_2H_6^-$, appears [29] to have a structure very similar to that of $C_2H_6^+$ [30], which may be regarded as a half-way house between the D_{3d} ethane structure and the D_{2h} diborane structure.

References

- 1 A. Hasegawa, G. D. G. McConnachie and M. C. R. Symons, J. Chem. Soc., Faraday Trans. 1, 80, 1005 (1984).
- 2 J. R. M. Giles and B. P. Roberts, J. Chem. Soc., Chem. Commun., 1167 (1981).
- 3 M. C. R. Symons and L. Harris, J. Chem. Soc., Faraday Trans. 1, 78, 3109 (1982).

- 4 S. W. Bennett, C. Eaborn, A. Hudson, R. A. Jackson and K. D. J. Root, *J. Chem. Soc. A*:, 348 (1970).
- 5 A. Begum, A. R. Lyons and M. C. R. Symons, J. Chem. Soc. A:, 2290 (1971).
- 6 P. J. Krusic and J. K. Kochi, J. Am. Chem. Soc., 91, 3938 (1969).
- 7 A. Begum, J. H. Sharp and M. C. R. Symons, J. Chem. Phys., 53, 3756 (1970).
- 8 M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
- 9 W. Thiel, P. Wiener, J. Stewart and M. J. S. Dewar, QCPE, No, 428.
- 10 M. J. S. Dewar, M. L. McKee and H. S. Rzepa, J. Am. Chem. Soc., 100, 3607 (1978).
- 11 C. Glidewell, J. Chem. Res. (S), 22 (1983).
- 12 C. Glidewell, J. Chem. Soc., Perkin Trans., 2, 1285 (1983).
- 13 C. Glidewell, J. Chem. Soc., Perkin Trans., 2, 407 (1984).
- 14 V. Barone, J. Douady, Y. Ellinger, R. Subra and F. Pauzat, Chem. Phys. Letts., 65, 542 (1979).
- 15 C. Glidewell, Inorg. Chim. Acta, 29, L283 (1978).
- 16 K. S. Pitzer and H. S. Gutowsky, J. Am. Chem. Soc., 68, 2204 (1946).
- 17 P. H. Lewis and R. E. Rundle, J. Chem. Phys., 21, 986 (1953).
- 18 M. B. Smith, J. Organomet. Chem., 46, 31 (1972).
- 19 R. L. Hudson and F. Williams, J. Am. Chem. Soc., 99, 7714 (1977).
- 20 A. Hasegawa and M. Hayashi, Chem. Phys. Letts., 77, 618 (1981).

- 21 R. C. Catton and M. C. R. Symons, J. Chem. Soc. A:, 2001 (1969).
- 22 W. B. Gara, J. R. M. Giles and B. P. Roberts, J. Chem. Soc., Perkin Trans., 2, 1444 (1979).
- 23 K. Nishikida and F. Williams, Chem. Phys. Letts., 34, 302 (1975).
- 24 T. Shida, H. Kubodera and Y. Egawa, Chem. Phys. Letts., 79, 179 (1981).
 25 J. T. Wang and F. Williams, J. Chem. Soc., Chem.
- Commun., 666 (1981).
- 26 M. C. R. Symons, J. Chem. Soc., Chem. Commun., 1251 (1981).
- 27 H. Sakurai, K. Mochida and M. Kira, J. Am. Chem Soc., 97, 929 (1975).
- 28 G. B. Watts and K. U. Ingold, J. Am. Chem. Soc., 94, 491 (1972).
- 29 V. P. J. Marti and B. P. Roberts, J. Chem. Soc., Chem. Commun., 272 (1984).
- 30 M. Iwasake, K. Toriyama and K. Nunome, J. Am. Chem. Soc., 103, 3591 (1981).